S=-16t^2+160

Simple and best practice solution for S=-16t^2+160 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for S=-16t^2+160 equation:



=-16S^2+160
We move all terms to the left:
-(-16S^2+160)=0
We get rid of parentheses
16S^2-160=0
a = 16; b = 0; c = -160;
Δ = b2-4ac
Δ = 02-4·16·(-160)
Δ = 10240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$S_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$S_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{10240}=\sqrt{1024*10}=\sqrt{1024}*\sqrt{10}=32\sqrt{10}$
$S_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{10}}{2*16}=\frac{0-32\sqrt{10}}{32} =-\frac{32\sqrt{10}}{32} =-\sqrt{10} $
$S_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{10}}{2*16}=\frac{0+32\sqrt{10}}{32} =\frac{32\sqrt{10}}{32} =\sqrt{10} $

See similar equations:

| 5m+5=(2m–10) | | 39*39=x*x+6x+12 | | 32x–5.3x+4=0. | | 15=1/4x | | 3(x+A)=B*x+1 | | 2/k=3/6 | | (-2)=x²-3 | | (-5)=4-7x | | 256=x² | | 144=x² | | 2z-2=6z+8 | | 5(2x+1)=0.5(10x+1)+5 | | 44=d-(d/0.55) | | 3x+20°=x | | -76x+76=76x+76−76x+76=76x+76 | | (p+10)(p-15)=0 | | 5x/7=37 | | x+6÷4+x-3÷5=5x-4÷8 | | 180-6x=3x | | 16^{-3x+2}=4^{2x-4} | | 6×-5=5x+7 | | 4(x+7)+7=4x+4 | | 9×(c-2)=72 | | 0.45+0.1x=0.7 | | 6y^2-31y+1=0 | | (72+x)/5=19 | | 72+x/5=19 | | b=221-b | | 5x+27=-9(x-10)+7 | | b*(b+7)=228 | | 3(x+3)=4(x–3)* | | 31=(y+30)+y |

Equations solver categories